MAT

Long-Term Spectral Pseudo-Entropy (LTSPE) Feature


This is the source code (MATLAB) of the LTSPE feature.

 

Submit an Analysis

Dataset Files

No Data files have been uploaded.

OPEN ACCESS Dataset Details

Citation Author(s):
Submitted by:
mohammad rasoul...
Last updated:
Fri, 12/01/2017 - 08:44
DOI:
10.21227/H2G05K
Data Format:
 
Cite

Categories & Keywords

Subscribe

[1] , "Long-Term Spectral Pseudo-Entropy (LTSPE) Feature", IEEE Dataport, 2017. [Online]. Available: http://dx.doi.org/10.21227/H2G05K. Accessed: Dec. 12, 2017.
@data{h2g05k-17,
doi = {10.21227/H2G05K},
url = {http://dx.doi.org/10.21227/H2G05K},
author = { },
publisher = {IEEE Dataport},
title = {Long-Term Spectral Pseudo-Entropy (LTSPE) Feature},
year = {2017} }
TY - DATA
T1 - Long-Term Spectral Pseudo-Entropy (LTSPE) Feature
AU -
PY - 2017
PB - IEEE Dataport
UR - 10.21227/H2G05K
ER -
. (2017). Long-Term Spectral Pseudo-Entropy (LTSPE) Feature. IEEE Dataport. http://dx.doi.org/10.21227/H2G05K
, 2017. Long-Term Spectral Pseudo-Entropy (LTSPE) Feature. Available at: http://dx.doi.org/10.21227/H2G05K.
. (2017). "Long-Term Spectral Pseudo-Entropy (LTSPE) Feature." Web.
1. . Long-Term Spectral Pseudo-Entropy (LTSPE) Feature [Internet]. IEEE Dataport; 2017. Available from : http://dx.doi.org/10.21227/H2G05K
. "Long-Term Spectral Pseudo-Entropy (LTSPE) Feature." doi: 10.21227/H2G05K

Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature


This is the source code (MATLAB) of the LTMBMCR feature.

 

Submit an Analysis

Dataset Files

No Data files have been uploaded.

OPEN ACCESS Dataset Details

Citation Author(s):
Submitted by:
mohammad rasoul...
Last updated:
Fri, 12/01/2017 - 03:31
DOI:
10.21227/H2NW6G
Data Format:
 
Cite

Categories & Keywords

Subscribe

[1] , "Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature", IEEE Dataport, 2017. [Online]. Available: http://dx.doi.org/10.21227/H2NW6G. Accessed: Dec. 12, 2017.
@data{h2nw6g-17,
doi = {10.21227/H2NW6G},
url = {http://dx.doi.org/10.21227/H2NW6G},
author = { },
publisher = {IEEE Dataport},
title = {Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature},
year = {2017} }
TY - DATA
T1 - Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature
AU -
PY - 2017
PB - IEEE Dataport
UR - 10.21227/H2NW6G
ER -
. (2017). Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature. IEEE Dataport. http://dx.doi.org/10.21227/H2NW6G
, 2017. Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature. Available at: http://dx.doi.org/10.21227/H2NW6G.
. (2017). "Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature." Web.
1. . Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature [Internet]. IEEE Dataport; 2017. Available from : http://dx.doi.org/10.21227/H2NW6G
. "Long-Term Multi-Band Mean-Crossing Rate (LTMBMCR) Feature." doi: 10.21227/H2NW6G

Projectiles Optimization (PRO) algorithm


This is the source code (MATLAB) of the projectiles optimization (PRO) algorithm.

 

Submit an Analysis

Dataset Files

No Data files have been uploaded.

OPEN ACCESS Dataset Details

Citation Author(s):
Submitted by:
mohammad rasoul...
Last updated:
Sun, 11/19/2017 - 08:07
DOI:
10.21227/H2TK92
Data Format:
 
Cite

Categories & Keywords

Subscribe

[1] , "Projectiles Optimization (PRO) algorithm", IEEE Dataport, 2017. [Online]. Available: http://dx.doi.org/10.21227/H2TK92. Accessed: Dec. 12, 2017.
@data{h2tk92-17,
doi = {10.21227/H2TK92},
url = {http://dx.doi.org/10.21227/H2TK92},
author = { },
publisher = {IEEE Dataport},
title = {Projectiles Optimization (PRO) algorithm},
year = {2017} }
TY - DATA
T1 - Projectiles Optimization (PRO) algorithm
AU -
PY - 2017
PB - IEEE Dataport
UR - 10.21227/H2TK92
ER -
. (2017). Projectiles Optimization (PRO) algorithm. IEEE Dataport. http://dx.doi.org/10.21227/H2TK92
, 2017. Projectiles Optimization (PRO) algorithm. Available at: http://dx.doi.org/10.21227/H2TK92.
. (2017). "Projectiles Optimization (PRO) algorithm." Web.
1. . Projectiles Optimization (PRO) algorithm [Internet]. IEEE Dataport; 2017. Available from : http://dx.doi.org/10.21227/H2TK92
. "Projectiles Optimization (PRO) algorithm." doi: 10.21227/H2TK92

Decoding local field potentials for neural interfaces


This dataset is associated with the paper, Jackson & Hall 2016, which is open source, and can be found here: http://ieeexplore.ieee.org/document/7742994/

The DataPort Repository contains the data used primarily for generating Figure 1.

Submit an Analysis

Dataset Files

You must login with an IEEE Account to access these files. IEEE Accounts are FREE.

Sign Up now or login.

OPEN ACCESS Dataset Details

Citation Author(s):
Submitted by:
Thomas Hall
Last updated:
Thu, 10/12/2017 - 13:48
DOI:
10.21227/H2VW5Z
Data Format:
Links:
 
Cite

Subscribe

[1] , "Decoding local field potentials for neural interfaces", IEEE Dataport, 2017. [Online]. Available: http://dx.doi.org/10.21227/H2VW5Z. Accessed: Dec. 12, 2017.
@data{h2vw5z-17,
doi = {10.21227/H2VW5Z},
url = {http://dx.doi.org/10.21227/H2VW5Z},
author = { },
publisher = {IEEE Dataport},
title = {Decoding local field potentials for neural interfaces},
year = {2017} }
TY - DATA
T1 - Decoding local field potentials for neural interfaces
AU -
PY - 2017
PB - IEEE Dataport
UR - 10.21227/H2VW5Z
ER -
. (2017). Decoding local field potentials for neural interfaces. IEEE Dataport. http://dx.doi.org/10.21227/H2VW5Z
, 2017. Decoding local field potentials for neural interfaces. Available at: http://dx.doi.org/10.21227/H2VW5Z.
. (2017). "Decoding local field potentials for neural interfaces." Web.
1. . Decoding local field potentials for neural interfaces [Internet]. IEEE Dataport; 2017. Available from : http://dx.doi.org/10.21227/H2VW5Z
. "Decoding local field potentials for neural interfaces." doi: 10.21227/H2VW5Z

Band-Limited Stokes LDDMM


The class of registration methods proposed in the framework of Stokes Large Deformation
Diffeomorphic Metric Mapping is a particularly interesting family of physically
meaningful diffeomorphic registration methods.
Stokes-LDDMM methods are formulated as a conditioned variational problem,
where the different physical models are imposed using the associated partial differential equations
as hard constraints.
The most significant limitation of Stokes-LDDMM framework is its huge computational complexity.

Submit an Analysis

Dataset Files

No Data files have been uploaded.

Dataset Details

Citation Author(s):
Submitted by:
Monica Hernandez
Last updated:
Tue, 10/10/2017 - 04:15
DOI:
10.21227/H24D0Q
Data Format:
 
Cite

Categories & Keywords

Subscribe

[1] , "Band-Limited Stokes LDDMM", IEEE Dataport, 2017. [Online]. Available: http://dx.doi.org/10.21227/H24D0Q. Accessed: Dec. 12, 2017.
@data{h24d0q-17,
doi = {10.21227/H24D0Q},
url = {http://dx.doi.org/10.21227/H24D0Q},
author = { },
publisher = {IEEE Dataport},
title = {Band-Limited Stokes LDDMM},
year = {2017} }
TY - DATA
T1 - Band-Limited Stokes LDDMM
AU -
PY - 2017
PB - IEEE Dataport
UR - 10.21227/H24D0Q
ER -
. (2017). Band-Limited Stokes LDDMM. IEEE Dataport. http://dx.doi.org/10.21227/H24D0Q
, 2017. Band-Limited Stokes LDDMM. Available at: http://dx.doi.org/10.21227/H24D0Q.
. (2017). "Band-Limited Stokes LDDMM." Web.
1. . Band-Limited Stokes LDDMM [Internet]. IEEE Dataport; 2017. Available from : http://dx.doi.org/10.21227/H24D0Q
. "Band-Limited Stokes LDDMM." doi: 10.21227/H24D0Q

Source Separation for Simultaneous Seismic Data Acquisition


This is the data competion hosted by the IEEE Machine Learning for Signal Processing (MLSP) Technical Committee as part of the 27th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2017), Tokyo, Japan. This year the competion is based on a dataset kindly provided Petroleum Geo-Systems (PGS), on source separation for seismic data acquistion. 


The submission period for this data competition has ended.

Copy All URIs to the Clipboard
View AWS Security Credentials
Your browser does not support copy-to-clipboard. Please press Ctrl+C (win) or Cmd+C (mac).

Dataset Details

Citation Author(s):
Submitted by:
Yuejie Chi
Last updated:
Tue, 08/08/2017 - 10:53
DOI:
10.21227/H2TP46
Data Format:
 
Cite

Categories & Keywords

Documentation

Subscribe

[1] , "Source Separation for Simultaneous Seismic Data Acquisition", IEEE Dataport, 2017. [Online]. Available: http://dx.doi.org/10.21227/H2TP46. Accessed: Dec. 12, 2017.
@data{h2tp46-17,
doi = {10.21227/H2TP46},
url = {http://dx.doi.org/10.21227/H2TP46},
author = { },
publisher = {IEEE Dataport},
title = {Source Separation for Simultaneous Seismic Data Acquisition},
year = {2017} }
TY - DATA
T1 - Source Separation for Simultaneous Seismic Data Acquisition
AU -
PY - 2017
PB - IEEE Dataport
UR - 10.21227/H2TP46
ER -
. (2017). Source Separation for Simultaneous Seismic Data Acquisition. IEEE Dataport. http://dx.doi.org/10.21227/H2TP46
, 2017. Source Separation for Simultaneous Seismic Data Acquisition. Available at: http://dx.doi.org/10.21227/H2TP46.
. (2017). "Source Separation for Simultaneous Seismic Data Acquisition." Web.
1. . Source Separation for Simultaneous Seismic Data Acquisition [Internet]. IEEE Dataport; 2017. Available from : http://dx.doi.org/10.21227/H2TP46
. "Source Separation for Simultaneous Seismic Data Acquisition." doi: 10.21227/H2TP46